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ABSTRACT 

 
This paper addresses some aspects of an on-going multiyear research project of GP Technologies for US Army 

TARDEC. The focus of the research project has been the enhancement of the overall vehicle reliability prediction 

process. This paper describes briefly few selected aspects of the new integrated reliability prediction approach. The 

integrated approach uses both computational mechanics predictions and experimental test databases for assessing 

vehicle system reliability. The integrated reliability prediction approach incorporates the following computational 

steps: i) simulation of stochastic operational environment, ii) vehicle multi-body dynamics analysis, iii) stress 

prediction in subsystems and components, iv) stochastic progressive damage analysis, and v) component life 

prediction, including the effects of maintenance and, finally, iv) reliability prediction at component and system level. 

To solve efficiently and accurately the challenges coming from large-size computational mechanics models and 

high-dimensional stochastic spaces, a HPC simulation-based approach to the reliability problem was implemented. 

The integrated HPC stochastic approach combines the computational stochastic mechanics predictions with 

available statistical experimental databases for assessing vehicle system reliability. The paper illustrates the 

application of the integrated approach to evaluate the relliability of the HMMWV front-left suspension system.   

 

INTRODUCTION 

 

An aspect of a key importance for accurate 

reliability prediction is the integration of various 

types of uncertain information sources and the 

incorporation of the lack of data effects. If 

modeling uncertainties are included, the 

stochastic dimensionality of the vehicle 

reliability problem increases from a single 

stochastic model to a set of stochastic prediction 

models that correspond to the stochastic model 

space. It should be noted that stochastic model 

space is usually a high-dimensional parameter 

space since it includes various model parameters 

that are considered random quantities. A 

flowchart of the computational reliability 

prediction process is shown in Figure 1 [3]. The 

paper focuses on the two upper-left blocks of the 

reliability chart that are drawn with dotted lines, 

that incorporate stochastic modeling and 

simulation of i) road profiles and ii) vehicle 

system dynamic behavior. However, for reader’s 

clarity, we briefly discuss other important 

aspects of the vehicle reliability prediction. The 

two lower-level blocks called “TAO RBDO” that 

are a specific part of the reliability-based 

optimization process using the TAO software 

developed by Argonne National Lab that is not 

addressed in this paper. 

 

The HMMWV suspension reliability analysis 

consisted in the following steps:  

 

1) Simulate stochastic road profile variations. 

The idealization of road profiles includes the 

superposition of two stochastic variations: i) the 

road surface variation (micro-scale continuous, 

including smooth variations and random bumps 

or holes), and ii) the road topography variation 

(macro-scale continuous variations, including 

curves and slopes).  

 

2) Simulate the HMMWV suspension parameters 

using randomly distributed variables to modify 

the nominal values. Average vehicle speed was 

varied between 17 MPH and 30 MPH.  
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3) Perform multibody dynamics simulations of 

the HMMWV system using as stochastic inputs 

the road profiles and vehicle suspension dynamic 

parameters (stiffness, damping). For each 

simulated road profile, an ADAMS vehicle 

multibody dynamics analysis is run to get 

simulated forces and displacements at each joint 

of the suspension system.  

 

4) Perform finite element (FE) stress analysis of 

the selected subsystem. From each HMMWV 

dynamics simulation a number of local response 

variables were considerd as random inputs for 

the stochastic FE stress analysis of the Front-Left 

Suspension System (FLSS). An efficient high-

performance computing (HPC) stochastic finite-

element analysis (FEA) code, specifically 

developed by GP Technologies for TARDEC, is 

employed.  

 

 
 

Figure 1 Vehicle reliability prediction flowchart [3] 

 

5) Compute the local stresses refined using 

stochastic response surface approximation 

(SRSA) models. These SRSA models are based 

on high-order stochastic field models that are 

capable of handling non-Gaussian variations, and 

non-linear correlations between component 

variables.  

 

6) Perform durability analysis under random 

corrosion-fatigue damage using stochastic crack 

nucleation and crack propagation models based 

on the damage curve approach (DCA) and the 

modified Forman crack propagation models. For 

reliability prediction at each critical location, 

probabilistic models based on lognormal and 

Weibull distributions were applied.  

7) Incorporate the uncertainty effects due to the 

lack of data. 

 

8) Incorporate Bayesian updating models for 

including experimental evidence form test data 

(for stresses) and field data (field failures). 

 

The paper provides in next sections more details 

on the reliability prediction methodology and, 

also, illustrates HMMWV sensitivity analysis 

results. It should be noted that the presented 

results are based on a “modified” HMMWV 

vehicle model developed based on incomplete, 

limited published information [2]. 
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OPERATIONAL ENVIRONMENT 

This section briefly describes the stochastic 

models used for the simulation of the road 

profiles. 

 

The idealization of road profiles includes the 

superposition of two stochastic variations: i) the 

road surface variation (micro-scale continuous, 

including smooth variations and random bumps 

or holes), and ii) the road topography variation 

(macro-scale continuous variations, including 

curves and slopes). The idealization of road 

profiles includes the superposition of two 

stochastic variations: i) the road surface variation 

(micro-scale continuous, including smooth 

variations and random bumps or holes), and ii) 

the road topography variation (macro-scale 

continuous variations, including curves and 

slopes). Vehicle suspension parameters were 

varied by using randomly distributed variables to 

modify the nominal values. Average vehicle 

speed was varied between 17 MPH and 30 MPH. 

Simulations were run using random combinations 

of the above mentioned variations. 

 

Specifically, we idealized the road surface 

profiles as non-Gaussian, non-stationary vector-

valued stochastic field models with complex 

spatial correlation structures. To simulate 

stochastic road profiles, we idealized them by 

non-Gaussian, non-stationary Markov vector 

processes that were obtained by solving a set of 

nonlinear, stochastically coupled second-order 

differential equations. The nonlinear mapping is 

based on an algebraic probability transformation 

of real, non-Gaussian variations defined by the 

available databases for road surfaces and 

topography to an ideal Gaussian image space.  

 

Figure 2 shows simulated road surface segments 

with high spatial correlation (HC) and low spatial 

correlation (LC) in the transverse direction of the 

road. The longitudinal variation of the mid-line 

road surface profile is the same for both HC and 

LC simulated roads. The HC road corresponds to 

a situation when the wheel inputs are about the 

same for two parallel wheel lines, so that right-

side and left-side wheels see about the same road 

surface track lines. Thus, for the HC roads, there 

two different wheel road inputs, each input for a 

pair of front-rear wheels.  In contrast, the LC 

road assumes that the right-side and left-side 

wheel road inputs are different. Thus, for LC 

roads there are four different wheel inputs. Thus, 

it is expected that a LC road profile will produce 

slighly larger vehicle dynamic responses in all 

directions, especially in the lateral direction. 

 

 

 
 

Figure 2 Simulated road surfaces with high (left) and low (right) transverse spatial correlations 
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Figure 3 Simulated (blue) and measured (red) road profiles (left plot) and their PDF (right plot) 

 
Based on various road measurements we noted 

that the road surface variations are highly non-

Gaussian as shown in Figure 3. This is somehow 

surprising since in the current practice the road 

surface profiles have been always idealized by 

simple zero-mean Gaussian stationary stochastic 

processes. For Gaussian stochastic processes, the 

covariance function (CF), or, alternatively, the 

power spectral density function (PSD, fully 

describes the stochastic process variation. In 

practice, the RMS value (standard deviation) and 

the PSD estimate are often used. Unfortunately, 

the RMS and PSD estimates are not sufficient for 

describing the non-Gaussian road surface 

variations. Most of the times, the road surface 

variations are highly non-Gaussian variations  

with a highly skewed probability density function 

(PDF) as indicated in Figure 3. The non-Gaussian 

variation aspect has a significant impact on the 

vehicle fatigue reliability prediction. It should be 

noted that if the non-Gaussian variation aspects 

of road surfaces are neglected, then, the predicted 

vehicle fatigue life and reliability are much larger 

than in reality.  

 

Figure 4 shows simulated non-Gaussian 

stochastic road surface profiles (median line) 

with different road roughnesses and no 

topography included. These segments correspond 

to limited-size stationary segments of the road 

profiles.  

 
 

Figure 4 Simulated road profiles (stationary segments) for different road roughnesses  
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VEHICLE DYNAMIC MODEL 

Specifically, in this project the HMMWV model 

number M966 (TOW Missle Carrier, Basic 

Armor without weapons) was selected, since the 

values of the total vehicle inertia were available 

[2]. The HMMWV vehicle is designed for both 

on-road and off-road applications, and all models 

share a common chassis with 4x4 wheel drive 

that is powered by a 145-hp engine. Only the 

major subsystems which were included in the 

HMWWV dynamic model (Figure 5) including 

parallel link steering with a pitman arm, double 

A-arm suspension, chassis, roll stabilization bar, 

powertrain and tires. Subsystems for the brakes 

and wheels were also included in the multi-body 

dynamics model.  

 

     
 

Figure 5 ADAMS HMMWV Dynamic Model     Figure 6 ADAMS Front Suspension Model 

 

A double Ackerman Arm type suspension unit is 

used on the HMMWV, one for each wheel. 

Dimensions and locations of the suspension 

elements differ between the front and rear 

subsystems; however, the topology remains the 

same. Both upper and lower control arms are 

connected to the upright arm with ball joints. The 

upright arm connects the wheel spindle to the 

suspension units. Rear radius rods are connected 

between the chassis to the rear suspension and 

control the rear wheel static toe angle. Front tie 

rods attach the steering subsystem with the front 

suspension and control the wheel steer angle. 

Front and rear suspensions both have a design 

Kingpin angle of 12 degrees and a kingpin offset 

of 2.14 inches. The front suspension has a caster 

angle of 3 degrees and a caster offset of 0.857 

inches. Topology of the suspension as modeled in 

ADAMS/Car can be seen in Figure 6. 

 

Shock absorber units are located on each 

suspension unit, and are attached between the 

lower control arm and chassis. Each shock 

absorber is comprised of three elements: a spring, 

a damper and a bumpstop. At design load and 

height, the springs are assumed to have linear 

behavior. The dampers on the other hand are 

meant to provide dissipative forces and are not 

linear. Dissipative forces are proportional to the 

relative velocity between the piston and cylinder 

of the shock. Both front and rear springs and 

dampers were modeled in a similar way, but 

using different data.  

 

The rear springs and dampers are designed for 

larger operating loads. Bumpstops are located on 

the end of the damper and provide an additional 

damping force in the shocks. They are engaged 

only after a certain amount of displacement 

occurs between the piston and cylinder of the 

shock absorber. Spring, damper and bumpstop 

parameters can be found in [2]. 
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The vehicle body is modeled as a single rigid-

body component with mass-inertia properties as 

given in [2]. As stated earlier, both the vehicle 

mass-inertia properties and the masses of the 

individual subsystems are known. Simplified 

geometry like that in Figure 4 was used to 

calculate each subsystem’s respective moment of 

inertia values.  

 

Tires used for all simulations were the Goodyear 

bias-type 36x12.5 LT Wrangler II. Front tire 

pressures of 20 pounds per square inch (psi) and 

rear tire pressures of 30 psi were maintained on 

the HMMWV. By using FTire’s template 

modeling scheme [1], only a select number of tire 

size, geometry and specification parameters were 

needed as input into the tire model; other 

characteristics such as carcass 

mass/damping/stiffness, tread and friction 

information were either inherited from the light 

truck tire template or could be calculated with 

FTire’s pre-processor routine.  
 

A more detailed description of the HMMWV 

ADAMS model is provided elsewhere [7]. 

 

HMMWV BEHAVIOR SIMULATION 

In light of the importance of the tire/road 

interaction due to the stochastic modeling of the 

road profiles, a co-simulation environment was 

used to accurately capture the vehicle dynamics. 

The MSC ADAMS/Car code was used to 

simulate the multi-body dynamics of the vehicle, 

and the tires and tire/road interaction are 

simulated by FTire. Road profiles of nearly a 

mile in length were used, and as such the 

computational model for determining the 

tire/road forces must be efficient and scalable.  

 

ADAMS/Car is a complete vehicle simulation 

package distributed by MSC. Software and in this 

work it is used to investigate the behavior of the 

rigid multi-body model of HMMWV. The 

modeling methodology divides a vehicle in 

subsystems that are modeled independently. 

Parameters are applied to the topology of a 

subsystem and a set of subsystems are invoked 

and integrated together at simulation time to 

represent the vehicle model. The subsystems 

present in our model include: a chassis, front and 

rear suspension, anti-roll bar, steering, brakes, a 

powertrain and four wheels. Note that only the 

wheels and not the tires are present in the 

ADAMS/Car model. Also, all the major 

subsystems (front/rear suspension, steering, roll 

bar and powertrain) are connected to the chassis 

with bushing elements. The HMMWV model as 

seen in ADAMS/Car is shown in Figure 5 

(chassis geometry is partially transparent). CAD 

geometry is applied to the chassis and tires to 

make the vehicle look realistic for animation 

purposes. The geometry has no bearing on the 

dynamic behavior of the vehicle. 

 

Driver controls were created in the ADAMS/Car 

event builder as a sequence of maneuvers. 

Maneuvers are defined by steering, throttle, 

brake, gear, and clutch parameters. In this set of 

simulations, a single maneuver is performed in 

which the vehicle attempts to follow the 

centerline of the road profile at a given vehicle 

speed. Static set-up and gear shifting parameters 

are not modified; however, the drive authority is 

sometimes reduced when large obstacles and 

high vehicle speeds cause simulations to fail. 

Drive authority specifies how aggressively the 

vehicle steering torque is applied when the 

vehicle deviates off the specified path. As the 

wheelbase of the HMMWV is wide and long, the 

minimum preview distance was substantially 

increased from its default value. 
 

A number of about 500 stochastic simulations 

were performed assuming as stochastic inputs 

different road profiles and vehicle suspension 

parameters. Figure 7 decribes different categories 

of stochastic road profiles.  

 

First, only the stochasticity associated to the road 

profile and vehicle speed were considered, 

assuming a deterministic HMMWV model. These 

simulations utilized the same vehicle/tire models, 

and varied the operating environment by 

changing 1) road profiles 2) adding topology and 

3) modifying the average vehicle speed. Road 

profiles were either 5000 feet or 1500 feet in 
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length, with both high and low correlation 

variations in the transverse direction. Topology 

on the road included rolling hills with short 

chicanes, long winding curves or no topology at 

all (straight road). The average vehicle speed was 

either 17 MPH or 30 MPH.  

 

Secondly, for selected road profiles, we 

considered that the HMMWV model suspension 

parameter variations are stochastic. Two types of 

simulated road profiles with and without 

topographic effects were employed. For each 

wheel suspension system there are 13 random 

variables. For four wheel suspensions there are 

52 variables. To handle these large numbers of 

variables we condensed them in three stochastic 

variation features: 1) BUSHINGS UCA (4 

variables), 2) BUSHINGS LCA (4 variables), 3) 

TIRE (3 variables) and 4) SPRING-SHOCK 

ABSORBER (2 variables).  

 

   
 

a) Flat road with no topography Effects; Passing a Random Bump 

 

    
 

b) With topography Effects; Smooth and Rough Stochastic Roads 

 

Figure 7 HMMWV Simulations with Stochastic Road Profiles 

 

The stochastic variables are modeled by               

i) lognormal variables with 2% and 5% c.o.v. for 

the spring and damper properties, ii) lognormal 

variables with 2%  c.o.v. for bushing properties, 

iii)  lognormal variables with 5% c.o.v. for tire 

properties. Currently, we are still reviewing 

technical literature to find specific statistical 

information for HMMWV dynamic system 
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parameters. Any specific information on 

HMMWV coming from TARDEC will be highly 

appreciated. 

 

To simulate the four stochastic variation features, 

we used Latin Hypercube Sampling (LHS) 

technique. Using LHS, stochastic input scenarios 

were created for each vehicle suspension 

stochastic feature.  For each of the four stochastic 

features we have simulated a number of 80 input 

scenarios that we run separately.  

 

For each simulated road profile, we performed an 

ADAMS/Car vehicle multibody dynamics 

analysis to get forces and displacements at each 

joint of the front suspension system. Stochastic 

variations in vehicle dynamic parameters 

(stiffness, damping) were included. From each 

the vehicle dynamics simulation, we saved 34 

output variables with 1-3 component time-

histories for various front-left suspension joint 

forces and displacements, vehicle chassis motion, 

displacements at wheel tire/road interface.  

 

A number of 36 variables were used as random 

inputs in the stochastic FE stress analysis of 

FLSS.  Each joint force component was used to 

scale the local stress influence coefficients 

computed for unit forces in the joints. 

 

 

 

 

SUSPENSION SYSTEM STRESS 

ANALYSIS 

The stochastic subsystem stress analysis is based 

on an efficient high-performance computing 

(HPC) stochastic finite-element analysis (FEA) 

code implemented by GP Technologies. The 

developed HPC stochastic FEA code is called 

Stochastic PARallel Tool for Analysis for 

Computational Unstructure-meshed Solids or 

condensed SPARTACUS. Figure 8 shows the 

FLSS model used for the HMMWV ADAMS 

vehicle multi-body dynamics analysis and the 

stochastic FEA using SPARTACUS. 

 

The SPARTACUS code is a result of integrating 

a finite element with a number of modules used 

for stochastic modeling and simulation that run 

together in an efficient computing environment 

driven by advanced HPC numerical libraries 

available from national labs and top universities. 

In addition to the standard FEA and HPC 

algorithms, SPARTACUS includes a unique suite 

of computational tools for stochastic modeling 

and simulation and stochastic preconditioning 

[3]. 

 

For stochastic FEA domain decomposition we 

used ParMETIS, an efficient multilevel 

partitioner software package developed by the 

University of Minnesota. Multilevel partitioners 

rely on the notion of restricting the fine graph to 

a much smaller coarse graph, by using maximal 

independent set or maximal matching algorithms.  

This process is applied recursively until the graph 

is small enough that a high quality partitioner, 

such as spectral bisection or k-way partitioners, 

can be applied. This partitioning of the coarse 

problem is then “interpolated” back to the finer 

graph – a local “smoothing” procedure is then 

used, at each level, to locally improve the 

partitioning. These methods are poly-logarithmic 

in complexity though they have the advantage 

that they can produce more refined partitions and 

more easily accommodate vertex and edge 

weights in the graph.   

 

The main idea to build a flexible HPC 

implementation structure for stochastic parallel 

FEA has been to combine the parallel 

decomposition in the simulated sample data 

space with the parallel decomposition in the 

physical-model space. This combination of 

parallel data space decomposition with parallel 

physical space decomposition provides a very 

high numerical efficiency for handling large-size 

stochastic FE models. This HPC strategy 

provides an optimal approach for running large-

size stochastic FE models. We called this HPC 

implementation is called the Controlled Domain 

Decomposition (CDD) strategy. The CDD 

strategy can be applied for handling multiple FE 

models with different sizes that will be split on a 

different number of processors as shown Figure 

9. There is an optimum number of processors to 

be used for each FE model, so that the stochastic 

parallel FEA reaches the best scalability. The 
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main advantage of the CDD implementation for 

HPC FEA is that large-size FE models can be 

partitioned into a number of FE submodels, each 

being solved on a single processor. Thus, each 

group of processors is dedicated to solve a large-

size FE model. CDD ensures dynamic load 

balancing after a group of processors has 

completed its allocated tasks and it becomes 

available for helping another group of processors.  

 

To be highly efficient for large-size FEA models, 

SPARTACUS incorporates an unique set of 

powerful stochastic preconditioning algorithms, 

including both global and local, sequential 

preconditioners. The role of preconditioning is of 

key significance for getting fast solutions for 

both linear and nonlinear stochastic FEA 

problems. It should be noted that the effects of 

stochastic preconditioning is larger for nonlinear 

stochastic FEA problems since it reduces both 

the number of Krylov iterations for linear solving 

and the number of Newton iterations for 

nonlinear solving. The expected speed up in 

SPARTACUS coming from stochastic 

preconditioning is at least 4-5 times for linear 

FEA problems and about 10-15 times for highly 

nonlinear FEA problems.  

 

To compute local stresses in subsystem 

components, refined stochastic response surface 

approximation (SRSA) models are used. These 

SRSA models are based on high-order stochastic 

field models that are capable of handling non-

Gaussian variations [4,5]. The SRSA 

implementations were based on two and three 

level hierarchical density models as shown in 

Figure 10. It should be noted that these SRSA 

models are typically more accurate than 

traditional responses surfaces, and are also 

limited to the mean response surface 

approximation. 

 
 

Figure 8: Front-Left Suspension System (FLSS); ADAMS model (left), and FEA model (right) 
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Figure 9 HPC CDD Implementation Strategy                 Figure 10 Stochastic Surface Approximation         

PROGRESSIVE DAMAGE MODELS 

For fatigue damage modeling, the following 

models are considered: 
 

Crack Initiation: Stochastic Phenomenological 

Cumulative Damage Models: 

1) Linear Damage Rule (Miner’s Rule) 

2) Damage Curve Approach (NASA Glenn) 

3) Double Damage Curve Approach (NASA 

Glenn)  

 

Crack Propagation: Stochastic Linear Fracture 

Mechanics-based Models:                     

1) Modified Forman Model (NASA JPC) 

 

Both the constitutive stress-strain equation and 

strain-life curve are considered to be uncertain. 

The two Ramberg-Osgood model parameters and 

the four strain-life curve (SLC) parameters are 

modeled as random variables with selected 

probability distributions, means and covariance 

deviations. We also included correlations 

between different parameters of SLC. This 

correlation can significantly affect the predicted 

fatigue life estimates.  We combined rainflow 

cycle counting with the Neuber’s rule for local 

plasticity modeling for any irregular stress-strain 

history. For a sequence of cycles with constant 

alternating stress and mean stress the Damage 

Curve Approach (DCA) and Double Damage 

Curve Approach (DDCA) were implemented.  

 

In comparison with the linear damage rule (LDR) 

or Miner’s rule, these two damage models predict 

the crack initiation life much more accurately. 

The shortcoming of the popular LDR or Miner’s 

rule is its stress-independence, or load sequence 

independence. LDR is incapable of taking into 

account the interaction of different load levels, 

and therefore interaction between different 

damage mechanisms or failure modes.  

 

There is substantial experimental evidence that 

shows that LDR is conservative under completely 

reversed loading condition for low-to-high 

loading sequences, and severely under 

conservative for high-to-low loading sequence. 

For intermittent low-high-low-high-…cyclic 

loading, the LDR severely underestimates the 

predicted life. The nonlinear damage models, 

DCA and DDCA, were implemented to 

adequately capture the effects of the HCF-LCF 

interaction and corrosion-fatigue damage for 

vehicle subsystem components.  
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Crack propagation was implemented using a 

stochastic modified Forman model. Both the 

stress intensity threshold and material toughness 

are considered as random variables. Corrosion–

fatigue damage effects due to pitting growth were 

considered by implementing a simultaneous 

corrosion-fatigue (SCF) model [4]. The total 

corrosion-fatigue damage in the crack nucleation 

stage is computed using a generalized interaction 

curve between corrosion and fatigue damages, 

while the in crack propagation stage is computed 

by linear fracture mechanic models (Forman 

model) for which the stress intensity factors are 

adjusted based on local crack size including both 

the fracture crack and the pit depth. 

 

 

RELIABILITY PREDICTION 

For life and reliability prediction we considered 

probabilistic life prediction models based on 

lognormal and Weibull probability distributions. 

To include the effect of the limited number of 

stochastic FEA simulation runs on the FLSS 

reliability we used both parametric and non-

parametric bootstrapping techniques.  

 

We also considered, as an option, the effect of 

off-line maintenance activities that include 

uncertainties related to the maintenance schedule, 

crack detection and sizing (Figure 11), and also 

the damage repair efficiency.   

 

Typically, reliability is quantified by probability 

of failure. The failure is defined by either 

reaching the ultimate crack length or reaching the 

stress intensity crack stability limit. If 

maintenance effects are considered, then, the 

reliability metric of interest is the hazard failure 

rate (HFR) instead of the probability of failure 

that is defined as the probability of failure per 

unit time. Average HFR are computed for each 

maintenance interval between two scheduled 

maintenance events. A probabilistic mixture 

model with lognormally distributed components 

is used for reliability prediction when 

maintenance is considered.  

 

Risk-Based Maintenance Analysis Concept
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Figure 11 Reliability Prediction including Effect of Maintenance Activities 
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SENSITIVITY STUDY RESULTS 

In this section we present selected results of 

several sensitivity studies. The output variables 

are considered the vehicle dynamic response and 

the local stresses at critical locations, predicted 

lives and reliability of FLSS for different 

stochastic input scenarios. 

 

Firstly, we focus on the effect of the stochastic 

road profile non-Gaussianity. Figure 12 shows 

the FLSS responses for a Gaussian and a non-

Gaussian straight, moderate roughness road 

profiles for a vehicle speed of 30 mph. The 

Gaussian and non-Gaussian road profiles have 

the same second-order statistical moments or 

power spectral densities. It should be noted that 

the local stress cycles at a critical location in 

LCA have about twice larger maximum 

amplitudes for non-Gaussian profile than for 

Gaussian profile. For different critical locations 

within FLSS, the predicted life is about 4 to 40 

times shorter for non-Gaussian profile than for 

Gaussian profile. These results infirm the current 

practice that is based on the use of Gaussian 

process models for road profile idealization.  

 

Next, we considered the effect of the road profile 

topography on the FLSS stress and life. We 

considered three types of simulated road profiles: 

i) straight profile (S) with a bump, ii) 

horizontally curved profile (long turns, LT) and 

iii) sloped and curved profile (rolling hills, RH). 

Figure 13 shows the effect of topography for a 

moderate roughness road profile on the FLSS 

joint forces. It should be noted that the effect of 

topography is important. The FLSS joint forces 

have several times larger amplitudes if 

topography effects are included. 

 

Figures 14 and 15 show the FLSS LCA ball joint 

lateral force variation and, respectively, the local 

Von-Mises stress variations (history and stress 

range) and the associated rainflow matrix (in 

alternating strain and mean stress coordinates) at 

a critical location in the FLSS LCA system.  

 

It should be noted that the maximum stress 

variation at the selected critical location is about 

ten times larger for the road profile with 

topography variation than for the straight road 

profile, although the road surface roughess is 

high for the simulated segment considered. For 

the S profile the maximum stress range amplitude 

is about 0.50 units if the bump is excluded, while 

for the RH profile the maximum stress range 

amplitude is about 5.30 units, and for the LT 

profile is 3.60 units.   

 

Figure 16 shows the effect the progressive 

damage modeling on the FLSS life prediction. 

The linear damage rule (LDR) provides a life that 

is twice as long as the predicted life using a 

nonlinear damage rule such the damage curve 

approach (DCA). These results show that the 

unconditional use of LDR for any fatigue damage 

modeling could produce crude reliability analysis 

results. It should be noted that the two 

progressive damage models LDR and DCA for 

creack nucleation were combined with the 

stochastic Forman model for crack propagation 

[4]. 

 

Figure 17 illustrates the effect of lack of data, for 

280 stochastic FEA simulations, on the 

probabilistic life prediction at a critical location 

of the FLSS LCA system. Both Weibull and 

lognormal life probabilistic models were 

considered. It should be noted that Weibull life 

model provides much shorter predicted lives for a 

given reliability level. For 99% reliability level, 

the mean Weibull life is 300 units in comparison 

with the mean lognormal life that is 750 units. 

This conservatism of the Weibull probablistic 

model is one important reason of the popularity 

of these models for life prediction in engineering 

practice.
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a) Measured and Simulated Road Profiles, Gaussian and Non-Gaussian, and Associated LCA 

Bushing Torque Moment Histories and PDF Estimates 

 
b) Simulated Local Stress Histories and Rainflow Matrices at A Critical Location in LCA  

 

Figure 12 Vehicle FLSS Response for Gaussian and Non-Gaussian Road Profiles at 30 mph 
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Figure 13 Joint Force Histories for S Profile (no topography) and RH Profile (with topography) 
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Figure 14 Joint Force Variations (Histories and PDF) in the LCA Ball Joint for Straight Road (upper), 

Horizontally Curved Road – Long Turns (middle) and Sloped and Curved Road – Rolling Hills (lower) 

 
Figure 15 FLSS Stress at A Critical Location in LCA for Straight Road (upper), Horizontally 

Curved Road – Long Turns (middle) and Sloped and Curved Road – Rolling Hills (lower) 
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Figure 16 Predicted FLSS Life Usind LDR and DCA Progressive Damage Models  

 

 

 
Figure 17 Effect of Lack of Data (280 Simulations) on Predicted Life for Given Reliability Levels  

of  90%, 95%, 99% and 99.99% 
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CONCLUSIONS 

To efficiently and accurately solve the challenges 

of vehicle reliability predictions coming from 

using large-size computational mechanics models 

in high-dimensional stochastic parameter spaces, 

an integrated HPC-based stochastic simulation 

based reliability approach was developed and 

implemented.  

 

The integrated reliability approach includes 

innovative tools that provide a great efficiency to 

the overall HPC implementation. These tools 

include advanced stochastic process models to 

describe the road profiles, stochastic FE 

techniques for domain decomposition and 

stochastic preconditioning fast MCMC 

simulation, three-level hierarchical and meshless 

probability integration models for stochastic 

response approximation and simulation, 

enhanced Bayesian model updating schemes, and 

an efficient Bayesian framework for 

incorporating modeling uncertainties and lack of 

data, and computing variation bounds 

(confidence intervals) of predicted risks.  

 

The integrated vehicle fatigue reliability 

prediction approach incorporates the following 

steps: 

i) simulation of the stochastic operational 

environment,  

 ii) stochastic vehicle multi-body 

dynamics analysis,  

 iii) stress prediction in subsystems and 

components,  

 iv) stochastic progressive damage 

analysis, and  

 v) component life prediction, eventually 

including off-line maintenance and on-line 

monitoring 

 vi) reliability prediction at vehicle 

component and system levels.  

 

The new integrated reliability approach is 

illustratively applied to predict the HMMWV 

suspension system probablistic life and 

reliability. The paper shows that a accurate 

stochastic modeling of road surface and 

topography variations are important aspects of an 

overall vehicle reliability analysis. Road surface 

variations are highly non-Gaussian, being rightly-

skewed toward larger amplitudes. The non-

Gaussian variation aspects of the road profiles 

have a significant impact on the predicted vehicle 

fatigue reliability. This is an important reliability 

aspect that was ignored in practice for long time. 

 

The paper also shows that the progressive 

damage modeling and the effect of limited 

simulation data impacts significantly on the  

HMMWV suspension system reliability 

prediction.  
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